Warning: Invalid argument supplied for foreach() in /home/customer/www/opendatascience.com/public_html/wp-includes/nav-menu.php on line 95
Warning: array_merge(): Expected parameter 2 to be an array, null given in /home/customer/www/opendatascience.com/public_html/wp-includes/nav-menu.php on line 102
Deep learning provides (relatively) new methods of automating a wide array of tasks historically thought only to be accomplished by the human brain. Applications range from difficult classifications and regressions to natural language understanding and image recognition. With Tyler Freckmann, we will take a tour of... Read more
Deep learning is well known for its applicability in image recognition, but another key use of the technology is in speech recognition employed to say Amazon’s Alexa or texting with voice recognition. The advantage of deep learning for speech recognition stems from the flexibility and predicting... Read more
A key avenue for deploying deep learning models is a mobile device. The advantage of running models in mobile apps instead of sending them to the cloud is the reduction in latency and the ability to ensure data privacy for users. Despite the variety of deep... Read more
Deep learning models like convolutional neural networks (ConvNet) require large amounts of data to make accurate predictions. In general, sufficient sample size for a ConvNet application would involve tens of thousands of images. Often, only a few thousand labeled images are available for training, validation, and... Read more
In this post we take a look at how to use cuDF, the RAPIDS dataframe library, to do some of the preprocessing steps required to get the mortgage data in a format that PyTorch can process so that we can explore the performance of deep learning on... Read more
In many cases, understanding why the model predicted a given outcome is a key detail for model users and a necessary diagnostic to insure your model makes decisions based on the correct features. For example, if you built a convolutional neural network that performed well at... Read more
The deep learning revolution has continued to expand in 2019, affecting a wide range of fields from neuroscience to social media and more. In practical as well as theoretical applications, deep learning is growing more advanced and more influential. Below are some of the most interesting... Read more
Recent advances in machine learning techniques such as deep learning (DL) have rejuvenated data-driven analysis in aerospace and integrated building systems. DL algorithms have been successful due to the presence of large volumes of data and its ability to learn the features during the learning process.... Read more
AI is the future, or so you’re hearing. Every day, news of another organization leveraging AI to produce business outcomes that outstrip competition hit your inbox, but your company either hasn’t started at all or is mired in the discussion. AI, machine learning, and deep learning... Read more
Shounak Mitra, MathWorks’ Product Manager for Deep Learning Toolbox, will be presenting “everything but the training” at ODSC on Thursday, May 2nd at 2 PM in Room 202. Here are some of the highlights of the talk and why you should attend. In AI and deep... Read more