fbpx
Practical Naive Bayes — Classification of Amazon Reviews
If you search around the internet looking for applying Naive Bayes classification on text, you’ll find a ton of articles that talk about the intuition behind the algorithm, maybe some slides from a lecture about the math and some notation behind it, and a bunch of articles I’m... Read more
Predicting Resignation in the Military
In the 2015 hackathon organized by Singapore’s Ministry of Defense, one of the tasks was to predict resignation rates in the military, using anonymized data on 23,000 personnel which included their age, military rank, years in service, as well as performance indicators such as salary increments and... Read more
Machine Learning: An In-Depth Guide – Data Selection, Preparation, and Modeling
Articles Overview, goals, learning types, and algorithms Data selection, preparation, and modeling Model evaluation, validation, complexity, and improvement Model performance and error analysis Unsupervised learning, related fields, and machine learning in practice Introduction Welcome to the second article in a five-part series about machine learning. In... Read more
Machine Learning: An In-Depth Guide – Overview, Goals, Learning Types, and Algorithms
Articles Overview, goals, learning types, and algorithms Data selection, preparation, and modeling Model evaluation, validation, complexity, and improvement Model performance and error analysis Unsupervised learning, related fields, and machine learning in practice Introduction Welcome! This is the first article of a five-part series about machine learning.... Read more
This is the second article in our two-part series on using unsupervised and supervised machine learning techniques to analyze music data from Pandora and Spotify. Introduction As you may recall from the previous post I did, where I applied dimensionality reduction and clustering techniques to a set of songs... Read more
Time Series Analysis with Generalized Additive Models
Whenever you spot a trend plotted against time, you would be looking at a time series. The de facto choice for studying financial market performance and weather forecasts, time series are one of the most pervasive analysis techniques because of its inextricable relation to time—we are... Read more
The future of Machine Learning lies in its (human) past
Superficially different in goals and approach, two recent algorithmic advances, Bayesian Program Learning and Galileo, are examples of one of the most interesting and powerful new trends in data analysis. It also happens to be the oldest one. Bayesian Program Learning (BPL) is deservedly one of... Read more
An overview of gradient descent optimization algorithms
Note: If you are looking for a review paper, this blog post is also available as an article on arXiv. Table of contents: Gradient descent variants Batch gradient descent Stochastic gradient descent Mini-batch gradient descent Challenges Gradient descent optimization algorithms Momentum Nesterov accelerated gradient Adagrad Adadelta... Read more
9 ways to Level up your Data Science practice
We love reading articles with tips and best practices, and we agree with a lot of the advice we see out there (#5 on this list is great!). So, we asked the Domino team for advice to pass on to researchers and scientists searching for ways to get to... Read more
Cognitive Machine Learning (2): Uncertain Thoughts
She pined in thought,  And with a green and yellow melancholy She sat like Patience on a monument,  Smiling at grief. Was not this love indeed?   In King Lear, Shakespeare stirs a sense of self-consciousness by invoking Patience, sitting up high;... Read more