Searched for

260 results found
A decade of using text-mining for citation function classification
Academic work is typically filled with references to previous work. Unfortunately, most of these references have, at best, a tangential relevance. Thus you cannot trust that a paper that cites another actually “builds on it”. A more likely scenario is that the authors of the latest paper did not even... Read more
Time series classification with Tensorflow
Time-series data arise in many fields including finance, signal processing, speech recognition and medicine. A standard approach to time-series problems usually requires manual engineering of features which can then be fed into a machine learning algorithm. Engineering of features generally requires some  domain knowledge of the discipline where the data... Read more
Classification and Clustering Algorithms
A famous dialogue you could listen from the data science people. It could be true if we add it’s so challenging at the end of the dialogue. The foremost challenge starts from  categorising the problem itself. The first level of categorising could be whether supervised or unsupervised learning. The next level is what... Read more
Practical Naive Bayes — Classification of Amazon Reviews
If you search around the internet looking for applying Naive Bayes classification on text, you’ll find a ton of articles that talk about the intuition behind the algorithm, maybe some slides from a lecture about the math and some notation behind it, and a bunch of articles I’m not going to link... Read more
In this post we will describe how to evaluate a predictive model. Why bother creating complex predictive models if 5% of the customers will churn anyway? Because a predictive model will rank our clients based on the probability that they  will abandon the company. It helps answer these two questions: 1. How... Read more
How to Build a “Fake News” Classification Model
“A lie gets halfway around the world before the truth has a chance to get its pants on.” – Winston Churchill Since the 2016 presidential election, one topic dominating political discourse is the issue of “Fake News”. A number of political pundits claim that the rise of  significantly biased and/or untrue news influenced... Read more
Implementing a CNN for Text Classification in Tensorflow
The full code is available on Github. In this post we will implement a model similar to Kim Yoon’s Convolutional Neural Networks for Sentence Classification. The model presented in the paper achieves good classification performance across a range of text classification tasks (like Sentiment Analysis) and has since become a... Read more
The Power of Universal Latent Space In Medical Breakthroughs
The cost to develop new medicines has grown tremendously despite our computing and medical advances. Although we have a greater need than ever for massive breakthroughs in medical science, the industry itself is still a slow, highly regimented field. Mason Victors, CTO and CPO for Recursion Pharmaceuticals believes that universal... Read more
The Complete Guide to Decision Trees (part 2)
(See part 1 here.) Now you may ask yourself: how do DTs know which features to select and how to split the data? To understand that, we need to get into some details. All DTs perform basically the same task: they examine all the attributes of the dataset to find... Read more
The Complete Guide to Decision Trees (part 1)
In the beginning, learning Machine Learning (ML) can be intimidating. Terms like “Gradient Descent”, “Latent Dirichlet Allocation” or “Convolutional Layer” can scare lots of people. But there are friendly ways of getting into the discipline, and I think starting with this guide to decision trees is a wise decision. Decision... Read more