An Introduction to Active Learning
The current utility and accessibility of machine learning is in part due to the exponential increase in the availability of data over time. While data is abundant, labels that are required for specific supervised machine learning tasks can be difficult to obtain. At ODSC West in 2018, Dr. Jennifer... Read more
Crash Course: Pool-Based Sampling in Active Learning
Active learning is a class of machine learning problems where labeled data isn’t available for supervised algorithms. Let’s take the classic setup as an example. Say we have pictures of birds and want to classify them by type, but the images don’t have labels for what kind of bird... Read more