fbpx
TensorFlow vs Keras as an ML Framework
The success of a machine learning (ML) project can often come down to the framework it uses. Different systems fit different situations and users, so selecting the proper library is an important step in delivering the desired results. In that spirit, here’s a comparison of two... Read more
The ODSC Warmup Guide to Keras
Keras is a Python library for deep learning. Deep learning is a sub-branch of artificial intelligence that focuses on solving complex computations by emulating the working process of a human brain. Neural networks, computational graphs composed of nodes representing multiple operators for breaking down the tasks... Read more
6 Trending Python Machine Learning Packages on PyPI
As the most popular programming language for data science, Python packages, frameworks, and libraries are pulled by the millions each month. Month-to-month, Python packages reflect growing trends in the field of data science; as NLP is talked about more often, so will we see more packages... Read more
Turning a Keras Model into an Estimator
Google’s TensorFlow engine has a unique way of solving problems, allowing us to solve machine learning problems very efficiently. Nowadays, machine learning is used in almost all areas of life and work, with famous applications in computer vision, speech recognition, language translations, healthcare, and many more. ... Read more
Why I Love Keras and Why You Should Too
I started working with Deep Learning (DL) in the 2016 – 2017 time frame when the framework ecosystem was much more diverse and fragmented than it is today. Theano was the gold standard at the time, Tensorflow had just been released, and DeepLearning4j was still being... Read more
Keras Metrics: Everything You Need To Know
Keras metrics are functions that are used to evaluate the performance of your deep learning model. Choosing a good metric for your problem is usually a difficult task. you need to understand which metrics are already available in Keras and tf.keras and how to use them, in many... Read more
10 Notable Frameworks for NLP
Natural Language Processing hit its big stride back in 2017 with the introduction of Transformer Architecture from Google. State of the art approaches helped bridge the gap between humans and machines and helped us build bots capable of using human language undetected. It’s an exciting time.... Read more
5 Deep Learning Frameworks to Consider for 2020
Enough of flirting with deep learning and deep learning frameworks; it’s time to glide across the room and say, “Hello.” Call it an advanced subfield of machine learning or future to enhanced vision in the field of technology, deep learning won’t stop now!  Imbibed in the... Read more
Major Updates to the Most Popular Data Science Frameworks in 2019
This time last year we brought you a detailed report of all the important updates for popular data science (machine learning and deep learning) frameworks throughout 2018. The developers of these frameworks continue to innovate at an accelerated rate. Data scientists demand more powerful tools in... Read more
Top 7 Machine Learning Frameworks for 2020
Machine learning is a nightmare without some kind of structure. You can’t build everything from scratch, especially if you’re in a business setting. Even if you want to (and if you do, comment here and tell us about it!), you don’t have time in most cases.... Read more