fbpx
Practical Quantization in PyTorch
Quantization is a cheap and easy way to make your DNN run faster and with lower memory requirements. PyTorch offers a few different approaches to quantize your model. In this blog post, we’ll lay a (quick) foundation of quantization in deep learning, and then take a... Read more
Higher-level PyTorch APIs: A short introduction to PyTorch Lightning 
In recent years, the PyTorch community developed several different libraries and APIs on top of PyTorch. PyTorch Lightning (Lightning for short) is one of them, and it makes training deep neural networks simpler by removing much of the boilerplate code. However, while Lightning’s focus lies in... Read more
Optimizing Your Model for Inference with PyTorch Quantization
Editor’s Note: Jerry is a speaker for ODSC East 2022. Be sure to check out his talk, “Quantization in PyTorch,” to learn more about PyTorch quantization! Quantization is a common technique that people use to make their model run faster, with lower memory footprint and lower... Read more
The ODSC Warmup Guide to PyTorch
PyTorch is an open-source framework built for developing machine learning and deep learning models. In particular, this framework provides the stability and support required for building computational models in the development phase and deploying them in the production phase.  PyTorch functionalities are extensible with other Python... Read more
6 Trending Python Machine Learning Packages on PyPI
As the most popular programming language for data science, Python packages, frameworks, and libraries are pulled by the millions each month. Month-to-month, Python packages reflect growing trends in the field of data science; as NLP is talked about more often, so will we see more packages... Read more
Introduction to PyTorch
Recently, Microsoft and PyTorch announced a “PyTorch Fundamentals” tutorial, which you can find on Microsoft’s site and on PyTorch’s site. The code in this post is based on the code appearing in that tutorial, and forms the foundation for a series of other posts, where I’ll explore other... Read more
Optimizing PyTorch Performance: Batch Size with PyTorch Profiler
This tutorial demonstrates a few features of  PyTorch Profiler that have been released in v1.9. PyTorch. Profiler is a set of tools that allow you to measure the training performance and resource consumption of your PyTorch model. This tool will help you diagnose and fix machine learning performance issues regardless of whether you are working on one or... Read more
Ten Trending Data Science Tools in 2021
The fields of data science and artificial intelligence see constant growth. As more companies and industries find value in automation, analytics, and insight discovery, there comes a need for the development of new tools, frameworks, and libraries to meet increased demand. There are some tools that... Read more
Implementing Content-Based Image Retrieval with Siamese Networks in PyTorch
Image retrieval is the task of finding images related to a given query. With content-based image retrieval, we refer to the task of finding images containing some attributes which are not in the image metadata, but present in its visual content. In this post we: –... Read more
Autograd is PyTorch’s automatic differentiation package. Thanks to it, we don’t need to worry about partial derivatives, chain rule, or anything like it. To illustrate how it works, let’s say we’re trying to fit a simple linear regression with a single feature x, using Mean Squared... Read more